NIST Biometric Quality Workshop March 8-9 2006

Multi-camera Iris Quality Study
James Cambier, Ph.D.
Ulf Cahn von Seelen, Ph.D.

Agenda

- Iris recognition overview
- Study outline
- Results and Analysis
- Conclusions

Iris Template Generation and Matching

Iris Match Metrics

- Templates are fixed-length but have variable number of "usable" bits
- Hamming Distance used as match metric
 - HDraw = differing bits/usable bits
- Authentication uses "HDnorm" HDraw adjusted to account for change in imposter statistics if entire iris is not visible

Study Outline

- Six different Iridian-certified iris cameras
 - Single-eye desktop (DT) (3)
 - -Single-eye walk-up (SE) (1)
 - -Two-eye walk-up (TE) (2)
- 47 subjects
- Enrollment then recognition, each camera
- Same enrollment criteria, all cameras
- Evaluate recognition images and calculate metrics for authentic matches

Iris Quality Metrics

- Iris radius
- Pupil radius
- Pupil-iris ratio
- Iris-sclera contrast
- Iris intensity
- Texture energy
- Visible iris

Correlation of HDraw with all metrics

Camera

- DT
- DT
- × TE
- SE
- DT
- Δ TE

NOTE:

Iris-sclera contrast is not significantly correlated with HDraw

Pupil radius and iris radius are highly correlated

Multivariate Regression

Construct a function to predict HDraw from quality metrics:

$$Y = a_1 x_1 + a_2 x_2 + a_3 x_3 + ... + b$$

The predictive value of each metric is reflected in the magnitude of the t-ratios associated with the estimates for the weights a_i:

Texture energy	-6.67
% visible iris	-6.12
Iris radius	-4.56
Iris-pupil contrast	-3.61
Iris intensity	2.88
Pupil-iris ratio*	-1.32

*not significant, p-value > 0.05

Iris Radius by Camera

HDraw by Camera

User Motivation Matters

Conclusions

- Resolution is important, but not comprehensive
- The most significant quality factors (texture energy, % visible iris) are at least partially subject-specific and behavioral
- Current quality recommendations in ANSI/INCITS 379 and ISO/IEC 19794-6 based on pixel resolution are incomplete and should be revised
- Product selection must be based on

-Quality -Scalability

-Response Time -Security

-Interoperability -Cost

 Should "suitable for purpose" judgments be based on quality scores that are unavoidably subjectdependent?

THANK YOU!

jcambier@iridiantech.com www.iridiantech.com

